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Editorial

Aberrant Insulin Receptor Signaling and Amino Acid
Homeostasis as a Major Cause of Oxidative Stress in Aging

WULF DRÖGE1 and RALF KINSCHERF2

ABSTRACT

The mechanisms leading to the increase in free radical-derived oxidative stress in “normal aging” remains
obscure. Here we present our perspective on studies from different fields that reveal a previously unnoticed
vicious cycle of oxidative stress. The plasma cysteine concentrations during starvation in the night and early
morning hours (the postabsorptive state) decreases with age. This decrease is associated with a decrease in
tissue concentrations of the cysteine derivative and quantitatively important antioxidant glutathione. The de-
crease in cysteine reflects changes in the autophagic protein catabolism that normally ensures free amino acid
homeostasis during starvation. Autophagy is negatively regulated by the insulin receptor signaling cascade
that is enhanced by oxidative stress in the absence of insulin. This synopsis of seemingly unrelated processes
reveals a novel mechanism of progressive oxidative stress in which decreasing antioxidant concentrations and
increasing basal (postabsorptive) insulin receptor signaling activity compromise not only the autophagic pro-
tein catabolism but also the activity of FOXO transcription factors (i.e., two functions that were found to have
an impact on lifespan in several animal models of aging). In addition, the aging-related decrease in glutathione
levels is likely to facilitate certain “secondary” disease-related mechanisms of oxidative stress. Studies on cys-
teine supplementation show therapeutic promise. Antioxid. Redox Signal. 10, 661–678.
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INTRODUCTION

ALARGE BODY OF EVIDENCE suggests that oxidative stress
is one of the key factors that limit our lifespan and com-

promise the quality of life in old age. A series of longevity
strains of worms and fruit flies collectively suggests that an
increase in oxidative stress resistance is often associated with
an increase in lifespan (79, 116, 122, 138, 147, 184). An in-
crease in superoxide dismutase (Mn-SOD) has been impli-
cated in lifespan extension in the daf-2 mutant of Caenorhab-
ditis elegans (79), and catalase was shown to be required for
lifespan extension in daf-C and clk-1 mutants for C. elegans
(184). In Drosophila, an increase in lifespan was found in
strains with extra copies of genes of SOD and catalase (138,
147), and the long living mth mutant of Drosophila was
shown to have an increased resistance to a free radical gen-
erator (116). Similarly, the increased longevity of the p66shc

mouse mutant was associated with an increased resistance 
to oxidative stress (122). Last but not least, the maximum
longevity of various mammalian species was found to be 
negatively correlated with steady state levels of DNA dam-
age (10). Taken together, these findings strongly support the
free radical theory of aging that was proposed �50 years ago
(68).

It has been noted, however, that oxygen radicals and related
reactive oxygen species (ROS) are not generally hazardous but
play a positive role in various physiological signaling processes,
provided they are produced in strictly controlled quantities (re-
viewed in refs. 15 and 42). Superoxide dismutase (119) and
several other enzymes and antioxidative compounds provide an
effective means to counterbalance the potentially damaging ef-
fects of ROS. It is the disturbance of this delicate balance be-
tween ROS and antioxidants that leads to stress conditions
called oxidative stress (171).
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Several lines of evidence indicate that such a shift in balance
towards oxidative stress occurs also in the course of normal ag-
ing. Work by many laboratories has shown that lipid peroxida-
tion and the oxidative damage of protein and DNA increase
with age (8, 26, 27, 30, 51, 62, 65, 83, 93, 110, 117, 129, 134,
149, 154, 173, 176, 188, 193, 207). This age-related increase
in oxidative damage is typically associated with a correspond-
ing decrease in the concentrations of antioxidants, including
serum and tissue levels of vitamin E and plasma concentrations
of vitamin C (8, 35, 104, 167) and intracellular glutathione con-
centrations in various tissues from rats, mice, and guinea pigs
(4, 55, 140, 141, 143, 160). Glutathione is quantitatively the
most important scavenger of free radicals and, together with
glutathione peroxidase, an important substrate for the removal
of hydrogen peroxide. It is not known, however, how much
ROS concentrations increase as a consequence of the age-re-
lated decrease in intracellular glutathione concentrations, and
to what extent the age-related decrease in glutathione concen-
trations actually accounts for the progressive increase in vari-
ous manifestations of oxidative damage and for the decrease in
other antioxidative compounds. Nevertheless, the age-related
decrease in glutathione levels and the corresponding increase
in ROS concentrations render elderly subjects increasingly vul-
nerable to oxidation and facilitate the development of “sec-
ondary oxidative stress” by mitochondrial DNA mutation (162)
or various “disease-related” mechanisms of ROS production.

This editorial review summarizes evidence from both human
and experimental animal studies showing that the insulin re-
ceptor signaling pathway plays a decisive role in the regulation
of amino acid homeostasis under starving conditions (i.e., in
the postabsorptive state) and is likely to account at least partly
for the aging-related decrease in the postabsorptive plasma cys-
teine concentration. As this decrease is associated with an ag-
ing-related decrease in intracellular glutathione concentrations,
the redox sensitive insulin receptor signaling cascade appears
to be a key element in a vicious cycle of oxidative stress, as
schematically shown in Fig. 1. To illustrate this point, we are
presenting here a mosaic of short overviews on the various parts
of this cycle. There are still a few gaps in this mosaic and many
details require more experimentation. It was felt, however, that
this editorial review may be helpful and timely.

CHANGES IN GLUTATHIONE
CONCENTRATION DURING STARVATION

AND IN THE COURSE OF AGING

The tripeptide glutathione typically shows a high turnover
along well-defined metabolic pathways (120). In line with the
circadian diet-dependent variation in plasma cysteine concen-
trations (19), the glutathione concentrations in liver and plasma
show a strong circadian variation and an even stronger decrease
by �50% upon extensive starvation (19, 85). This finding sug-
gests that the organism may be most vulnerable against ROS
in the postabsorptive state and that the greatest impact of ox-
idative stress on aging-related parameters in humans is likely
to take place at night and in the early morning hours. Other or-
gans showed little or no circadian variation but a marked de-
crease after 48 h of starvation (85). A circadian variation in in-
tracellular glutathione concentrations has also been reported for

human bone marrow, but the differences were in this case rel-
atively small (174). 

An age-related decrease in the intracellular glutathione con-
centration has been reported for the liver and kidney from rats
(4), brain tissues from rats and mice (143, 160), retinal glia cells
from guinea pigs (141), and spleen cells from mice (55). In
many instances, a decrease in intracellular glutathione concen-
tration has been associated with an oxidative shift in glutathione
redox status (reviewed in refs. 41 and 45). Age-related changes
in the intracellular glutathione redox status have been reported
for rat skeletal muscle tissue (133), liver, kidney, and brain from
rats and mice (4, 57, 143) mouse brain (28), rat brain (45, 82),
and mouse macrophages (127). In humans, an age-related ox-
idative shift in glutathione redox status has been shown in skele-
tal muscle tissue (145) and in peripheral blood mononuclear
cells (72, 109).

The glutathione concentration in plasma is extremely small
in comparison to both the intracellular glutathione concentra-
tion and the plasma cysteine concentration. Based on studies
on rats, it has been suggested that variations in plasma glu-
tathione concentration reflect variations in hepatic glutathione
concentration (108). In line with the age-related decrease in in-
tracellular glutathione levels, the plasma glutathione level also
decreases with age (87, 159, 199). In view of the role of the
plasma cysteine concentration as a critical determinant of the
intracellular (notably intrahepatic) glutathione level (see below)
and because of the export of glutathione into the plasma, it is
reassuring to see that the plasma glutathione concentration was
found to be significantly correlated with the plasma cysteine
concentration in a study of young healthy human subjects (86).
Studies in humans indicated that the plasma glutathione con-
centration is lower in the morning than in the afternoon (19,
49), but follows the diurnal variation of plasma cysteine with
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FIG. 1. A vicious cycle causing oxidative stress in ag-
ing. The insulin-independent oxidative enhancement of in-
sulin receptor signaling activity (basic IRS) leads to an im-
pairment of autophagic activity (AUPH) and amino acid
homeostasis associated with a decrease in the postabsorptive
plasma cysteine concentration. This causes a decrease in intra-
cellular glutathione (GSH) and a corresponding increase in ROS
concentrations that lead ultimately to a further upregulation of
the insulin-independent basic insulin receptor signaling cas-
cade. It may be noted that all the changes described by the ar-
rows in this scheme happen primarily during the night and early
morning hours [i.e., in the postabsorptive (starved) condition].



a delay of several hours (19). Like plasma glutathione, the
plasma concentration of glutathione disulfide is also signifi-
cantly correlated with the tissue glutathione concentration, but
its redox status is markedly more oxidized than in the tissue
and independent of the cysteine/cystine redox status in the
plasma (88).

Although the intracellular glutathione concentration in the
liver is influenced by various factors, including �-glutamyl cys-
teine ligase activity or environmental toxins and other xenobi-
otic substances (172), the hepatic glutathione concentration is
determined to a large extent by the availability of its precursor
amino acid cysteine. In mice, intravenous injection of cysteine
derivatives such as N-acetylcysteine or glutathione was found
to cause within 2 h a significant increase in the intracellular
glutathione concentration in the liver but not in kidneys, spleen,
or lung (85). It was therefore of interest to determine whether
the postabsorptive plasma concentration of nonprotein thiol
(acid-soluble thiol) or its major constituent cysteine may sig-
nificantly decrease with age.

AGE-RELATED DECREASE IN
POSTABSORPTIVE CYSTEINE AND
ASPARAGINE CONCENTRATIONS

INDICATIVE OF CHANGES IN 
AMINO ACID HOMEOSTASIS

A study of 219 healthy human subjects between the third and
the ninth decade of life revealed a significant decrease in the
postabsorptive plasma concentrations of nonprotein thiol and

of asparagine (64, 75; Fig. 2). Nonprotein thiol can be consid-
ered in first approximation as a measure of plasma cysteine be-
cause the plasma concentrations of glutathione or other low mo-
lecular weight thiol compounds are very low in comparison to
the plasma cysteine concentration. The age-related decrease of
the mean plasma cysteine concentration has been confirmed by
high pressure liquid chromatography (HPLC) (87).

The age-related decrease in plasma cysteine is associated
with an equally significant increase in its oxidized derivative
cystine (64, 87; Fig. 2). It was therefore tempting to speculate
that the decrease in cysteine may result from enhanced oxida-
tion into cystine, possibly due to an age-related increase in ROS.
As persuasive as this argument may be, it is not supported by
evidence. Middle-aged obese and hyperlipidemic patients show
a significant decrease in plasma levels of nonprotein thiol
(mainly cysteine) together with a decrease in asparagine, but
no increase in the plasma cystine concentration (Fig. 2).

REGULATION OF POSTABSORPTIVE
CYSTEINE AND ASPARAGINE

HOMEOSTASIS BY AUTOPHAGY

As cysteine and asparagine are protein-forming amino acids,
the body has at all times a relatively large reservoir of both
amino acids. Young healthy individuals are able to maintain an
adequate amount of free amino acids, including cysteine and
asparagine, in the postabsorptive (starved) state through a
tightly regulated mechanism of protein catabolism called au-
tophagy (111, 170). To prevent excessive and potentially harm-
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42.5�10.4 years (n�47) . Data on obese and hyperlipidemic subjects are taken from the study in ref. 76. Other data are un-
published data from Wulf Dröge (see also ref. 64).

; healthy subjects, age �70 years (n�52) ; obese subjects, age 42.0�11.8 years (n�49) ; Hyperlipidemic subjects, age

FIG. 2. Age- and disease-related changes in certain postabsorptive plasma amino acid levels (�S.D). Corresponding male
and female subjects were not significantly different and have therefore been combined. Stars (�) indicate a significant differ-
ence between the indicated groups. Healthy subjects, age 19–29 years (n�93) �; healthy subjects, age 30–69 years (n�116) 



ful autocatabolism, autophagy is negatively controlled by the
same signaling pathway that positively controls the rate of pro-
tein synthesis [i.e., the insulin receptor signaling cascade in-
cluding its key regulator, the target of rapamycin (TOR, mTOR
in mammals) (33, 43, 136)]. Because mTOR is also activated
by increasing concentrations of free amino acids and because
mTOR negatively controls autophagic activity, this system pro-
vides an almost perfect autoregulatory loop which stops au-
tophagy when free amino acid concentrations increase and reach
a certain level (Fig. 3).

The concomitant decrease in both nonprotein thiol and as-
paragine in elderly, obese, and hyperlipidemic subjects is best
explained by the interpretation that the postabsorptive (au-
tophagic) protein catabolism is markedly impaired in all these
conditions. This interpretation is supported by animal studies
showing that autophagic activity is enhanced by the injection
of an antilipolytic agent (16) or by dietary restriction (39). An-
other hypothetical mechanistic link between low plasma thiol
(cysteine) levels and hyperlipidemia is discussed below.

In humans, the insulin- and amino acid-sensitive postab-
sorptive (autophagic) net protein catabolism in the peripheral
(mostly skeletal muscle) tissue can be conveniently measured
by determining the amino acid exchange rate across the lower
extremities, as defined by the difference between the plasma
amino acid concentrations in the femoral artery and femoral
vein, multiplied by the blood flow (17, 181, 196). Amino acid
exchange studies have shown that the peripheral tissues (mainly
skeletal muscle) take up amino acids during the postprandial
(fed) state and release amino acids in the postabsorptive (fasted)
state (i.e., in a state with relatively low plasma insulin and amino
acid levels). This postabsorptive release of amino acids is
strongly inhibited by infusion of insulin or by exogenous sup-
ply of amino acids, suggesting that it is mainly mediated by the
lysosomal/autophagic mechanism of protein catabolism (17, 37,
54, 58, 126, 150, 181, 196).

Postabsorptive amino acid exchange studies in young healthy

human subjects revealed a mean release of asparagine into the
blood of 23.4 � 3.7 nmol min�1 100 ml tissue�1 (78) which
approximately corresponds to 8.2 �moles min�1 in a person of
70 kg (�35 kg muscle mass). Given the venous plasma as-
paragine concentration of 60 �M (see Fig. 2) and �3 L total
plasma volume, the mean postabsorptive tissue asparagine re-
lease would be sufficient to replace the entire plasma asparagine
pool about every 22 min. This is about twice as fast as for most
other amino acids (not shown). Conversely, the urinary excre-
tion of asparagine (83.5 �moles hr�1 , see ref.132) is sufficient
to release the entire plasma asparagine pool every 129 min,
which is again exceptionally fast in comparison with most other
amino acids. Irrespective of other metabolic/catabolic pro-
cesses, these exceptionally high values of tissue release and uri-
nary excretion relative to the plasma concentration are indica-
tive of a high turnover of the plasma asparagine pool. This may
explain why the plasma asparagine concentration is more pro-
foundly affected by changes in the (autophagic) amino acid ho-
meostasis than other amino acids except cysteine (see Fig. 2).
Unfortunately, the corresponding tissue release and urinary ex-
cretion data for cysteine have not yet been determined.

Amino acid exchange studies in humans have also shown
that the postabsorptive (autophagic) release of amino acids by
the peripheral tissues is associated, and quantitatively corre-
lated, with a corresponding uptake of one single amino acid,
glutamate (77). The postabsorptive glutamate uptake, in turn,
leads to a corresponding decrease in venous plasma glutamate
concentration, implying that any decrease in postabsorptive pro-
tein catabolism is associated with an increase in the postab-
sorptive venous glutamate concentration (63). The glutamate
data in Fig. 2 confirm this point: The decrease in plasma non-
protein thiol and asparagine concentrations in seemingly
healthy elderly subjects and middle-aged obese and hyperlipi-
demic patients was in all three cases associated with a signifi-
cant increase in the postabsorptive venous plasma glutamate
concentration. The increase in plasma glutamate is, therefore,
further supportive evidence for a decrease in postabsorptive (au-
tophagic) protein catabolism.

Taken together, there is evidence from different laboratories
showing that the mean plasma cysteine concentration in the
postabsorptive (starving) condition decreases with age. This de-
crease is associated with a similar significant decrease in as-
paragine and a corresponding increase in the postabsorptive
plasma glutamate concentration. These changes are indicative
of an aberrant amino acid homeostasis and best explained by
the assumption that the postabsorptive (autophagic) protein ca-
tabolism decreases with age (see below).

CLOSING THE VICIOUS CYCLE: REDOX
RESPONSIVENESS OF THE INSULIN
RECEPTOR SIGNALING CASCADE

The weak point in the homeostatic control is that the au-
tophagic activity is regulated not only by the free amino acid
levels but also by the insulin receptor signaling cascade (Fig
3). The postabsorptive (starved) state is typically associated
with low amino acid concentrations and low insulin levels. Sev-
eral lines of evidence have shown, however, that even in the
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FIG. 3. Regulation of amino acid homeostasis during star-
vation by autophagy. Autophagy serves as a mechanism of
amino acid homeostasis by converting proteins into free amino
acids at a strictly regulated rate which is downregulated by free
amino acids in a concentration-dependent way. Autophagy is
also negatively regulated by the insulin receptor signaling 
cascade.



absence of insulin, the activity of the insulin receptor signaling
pathway is abnormally increased by oxidative stress. The age-
related increase in oxidative stress provides therefore an ex-
planation for the age-related change in the homeostatic control
of cysteine and asparagine.

The basic activity of the insulin receptor signaling pathway
in the absence of insulin is weak but is increased under oxida-
tive conditions. Activation of the insulin receptor involves its
autophosphorylation and is typically followed by phosphoryla-
tion of several target proteins in the signaling cascade. This sig-
naling cascade is negatively regulated by several phosphatases
including protein tyrosine phosphatase 1B (PTB 1B), phospha-
tase, and tensin homologue on chromosome 10 (PTEN), and
SH2-domain-containing inositol phosphatase (SHIP2), all of
which are inactivated under moderately oxidative conditions
(18, 48, 59). PTP 1B, a phosphatase prominently involved in
the insulin receptor signaling pathway, is one of the molecu-
larly best characterized redox-sensitive signaling proteins (12,
13). Biochemical evidence indicates that the inhibition of its
catalytic activity can proceed by either of two ways (Fig. 4).
Hydrogen peroxide converts the catalytically relevant cysteine
moiety into cysteine sulfenic acid (Cys-SOH), which interacts
spontaneously with glutathione to form a catalytically inactive
mixed protein–glutathione disulfide. Alternatively, the redox-
sensitive cysteine residue may be converted directly by glu-
tathione disulfide into the inactive disulfide (Fig. 4). The glu-
tathionylated protein may be converted back into the
catalytically active reduced form by an oxidoreductase such as
glutaredoxin.

It has been estimated that a 30 mV change in redox status is
sufficient to cause a ten-fold change in the ratio of a protein
dithiol–disulfide motif and a corresponding change in protein
function (88). Although these glutathionylation processes in-
volve relatively slow nonenzymatic thiol–disulfide exchange
reactions, they may be facilitated by the persistence of the age-
related changes in the thiol/disulfide redox status. The details
of these processes such as compartmentalization, timing, and/or
duration are still under investigation (50, 164).

In contrast to the functional inactivation of the phosphatases,
the basic insulin receptor tyrosine kinase activity itself is
strongly increased by low concentrations of hydrogen peroxide
or by an oxidative shift in the glutathione redox status (165).
This effect of hydrogen peroxide was shown to act directly on
the cytoplasmic kinase domain and works, therefore, also in the
absence of insulin. As the activity of the insulin receptor sig-
naling pathway is determined by a balance between kinase and
phosphatase activities, the oxidative activation of the kinase and
the simultaneous inactivation of phosphatases, taken together,
tend to enhance synergistically the upregulation of the signal-
ing pathway.

Several lines of evidence support the in vivo relevance of
these regulatory processes. A substantial fraction of tyrosine
phosphatase activity in human adipose tissue has been shown
to exist in an inactive oxidized form that can be reactivated to
various degrees by biochemical reduction in vitro, indicating
that reversible oxidation plays a role in protein tyrosine phos-
phatase regulation in vivo (206). Treatment of mice with cys-
teine or N-acetylcysteine for a period of 1 week was shown to
cause a strong dose-dependent increase in plasma glucose con-
centration (192). In another study in mice, overexpression of

glutathione peroxidase 1 (GPX1) was shown to decrease both
the autophosphorylation of the hepatic insulin receptor and the
clearance of glucose from the blood (118). A correlation be-
tween increased glutathione peroxidase and decreased glucose
clearance has also been observed in a study of pregnant women
(29). Between time of entry and the third trimester of preg-
nancy, the women showed a significant increase in glutathione
peroxidase activity together with a significant increase in
postabsorptive insulin and glucose concentrations. Individual
changes in insulin and glucose levels were significantly corre-
lated with the individual changes in glutathione peroxidase. On
the average, the postabsorptive HOMA-R index (i.e., the prod-
uct of the insulin and glucose levels divided by 405, according
to the homeostatic model of insulin responsiveness) showed an
increase of �1.6 points during this period (29). (The apparent
decrease in postabsorptive insulin receptor signaling may serve
the purpose to ensure optimum autophagy, adequate free amino
acid homeostasis, and optimal glutathione levels during preg-
nancy. Enhanced autophagy may also be required for the lac-
tating mother to produce relatively large quantities of cysteine-
rich milk proteins). A similar increase in the postabsorptive
HOMA-R index by �2 points was observed in young obese
nondiabetic women after oral supplementation of N-acetylcys-
teine (76).

As phosphatase PTB1B was shown to be glutathionylated by
glutathione disulfide (12, 13), and because an oxidative shift in
glutathione redox status was shown to increase insulin recep-
tor autophosphorylation (165), it is concluded that the age-re-
lated decrease in the postabsorptive plasma cysteine concen-
tration leads to a vicious cycle of progressively increasing
oxidative stress, as schematically illustrated in Fig. 1.

Irrespective of these ROS-independent effects, the age-re-
lated decrease in plasma cysteine and intracellular glutathione
concentrations inevitably compromises the ROS scavenging ca-
pacity and is likely to cause an age-related increase in ROS con-
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FIG. 4. Oxidative inactivation of phosphatases. Phos-
phatases typically contain a redox sensitive cysteine residue
(SH) in their catalytic center. Upon oxidation by hydrogen per-
oxide, the phosphatase forms a catalytically inactive sulfenic
acid derivative (S-OH) which can be further converted into the
inactive glutathionylated derivative (S-SG) or other inactive de-
rivatives. The glutathionylated protein can be reactivated by an
oxidoreductase such as glutaredoxin.



centrations at least in the postabsorptive period (Fig. 1). This
process provides an explanation for the observed increase in
ROS-mediated structural damage in old age. In addition, the
age-related increase in ROS concentrations is expected to fur-
ther alter the set point of the redox-responsive insulin-inde-
pendent basic insulin receptor signaling cascade and may
thereby contribute to the vicious cycle (Fig. 1).

Such changes would inevitably compromise the activation of
certain Akt-inhibitable factors such as FOXO 1 and peroxisome
proliferator-activated receptor-� coactivator 1 (PGC-1�), as
discussed below. Other redox-responsive signaling cascades are
involved in the stimulation of certain inflammatory cytokines
that have also been implicated in the mechanism of aging (46)
and carcinogenesis (177).

LIFESPAN EXTENSION BY IMPAIRMENT
OF THE INSULIN RECEPTOR SIGNALING

CASCADE: THE “INSULIN RECEPTOR
PARADOX”

In support of the hypothetical scheme in Fig. 1, several
longevity strains of C. elegans and Drosophila were found to
involve mutations in components of the insulin receptor sig-
naling pathway (81, 92, 95, 125). Some of these mutants showed
a lifespan 2.5 times greater than that of the wild type. The in-
creased lifespan in these mutants indicated that the insulin re-
ceptor is capable of exerting important negative effects which
seriously compromise the lifespan of the species. In clinical
medicine, however, the insulin receptor is commonly known
for its positive function as a key regulator of glucose clearance,
protein synthesis, and other important metabolic functions. This
“insulin receptor paradox” raises the question whether the neg-
ative effects on lifespan may also be relevant in humans. The
more detailed analysis shows that the indicated positive effects
are mostly related to the postprandial (fed) state, whereas the
observed negative effects are related to functions that typically
operate in the postabsorptive (starved) condition as they are in-
hibited by the insulin receptor signaling cascade Activation of
the insulin receptor involves its autophosphorylation and leads
to sequential activation of other protein and lipid kinases, in-
cluding phosphatidyl inositol 3-kinase (PI3K), phosphoinosi-
tide-dependent protein kinase 1 (PDK1), the serine/threonine
kinases Akt1/2 (PKB), and the target of rapamycin (TOR, or
mTOR in mammals). Akt1 and/or Akt2 stimulate many typi-
cally insulin-dependent functions including protein synthesis,
but downregulate the autophagic/lysosomal protein catabolism,
(44, 136, 183), and elicit the phosphorylation and inhibition of
the forkhead transcription factor FOXO 1 (23, 152). Members
of the FOXO transcription factors were shown to have an im-
pact on lifespan in C. elegans (128) and Drosophila (81). In
addition, Akt2 phosphorylates and inhibits the transcriptional
coactivator PGC-1�, which is a global regulator of the postab-
sorptive hepatic metabolism and works in close association with
FOXO 1 (113, 152). In mice, PGC-1� was required for the nor-
mal expression of several mitochondrial genes in the liver,
skeletal muscle, heart, brain, and brown fat (reviewed in ref.
113). In the liver, PGC-1� and � are strongly induced upon

fasting (202, reviewed in ref. 115). As PGC-1� promotes he-
patic fatty acid oxidation in the starved condition and shifts fuel
usage from glucose to fat, an aberrant activation of Akt2 may
facilitate the development of hyperlipidemia and obesity. This
and the schematic model in Fig. 1 may thus explain the asso-
ciation between low plasma thiol (cysteine) concentrations and
hyperlipidemia or obesity (Fig. 2), as discussed below.

The importance of autophagy for lifespan extension in ani-
mals has been underscored by two independent genetic studies
in C. elegans (60, 121). In two independent studies on mice,
loss of autophagy in the central nervous system causes neu-
rodegeneration and a shortened lifespan (67, 103). Autophagy
has several important functions which are potentially relevant
to the aging process in both humans and animals (33, 43, 111,
117). By removing damaged mitochondria and other forms of
cellular waste, autophagy plays a key role in the maintenance
of cellular integrity (174). It has important roles in develop-
ment, immune defense, programmed cell death, tumor sup-
pression, and prevention of neuron degeneration (115, 153,
182). Mice with a deletion of one copy of the autophagy gene
beclin.1 (Becn1) or the Beclin 1 cofactor Bif1 showed a
markedly increased incidence of tumors, indicating that au-
tophagy may act as an important in vivo tumor suppressor (182,
203). Other well-known tumor suppressors, including the phos-
phatase PTEN, enhance autophagy by inhibiting the insulin re-
ceptor signaling activity. Perhaps most importantly, autophagy
plays a role in amino acid homeostasis by converting protein
into free amino acids at a rate which is downregulated either
by increasing free amino acid concentrations or by insulin, as
schematically illustrated in Fig. 3. The importance of amino
acid homeostasis has been clearly demonstrated in Saccha-
romyces cerevisiae and Dictyostelium discoideum, where au-
tophagy is essential for cellular survival at times of limited
amino acid availability (101, 139, 190). The consequences of
inadequate amino acid homeostasis in other species including
humans have not yet been systematically investigated.

CHANGES IN AUTOPHAGIC ACTIVITY
DURING STARVATION AND IN THE

COURSE OF AGING

Autophagic protein catabolism is inevitably a destructive pro-
cess that is strictly and negatively controlled by the same mech-
anism that positively controls protein synthesis [i.e., the insulin
signaling cascade and its key regulators Akt and TOR/mTOR
(see Fig. 3)]. TOR/mTOR is upregulated not only by the in-
sulin receptor cascade but also by an increase in amino acid
concentrations (43). The strong inhibition of autophagy by in-
sulin and elevated amino acid concentrations implicates that au-
tophagy is optimally activated only under conditions of starva-
tion (i.e., in the postabsorptive state), and suppressed in the
postprandial state (43). Electron microscopic studies in exper-
imental animals have confirmed that the maximum rate of au-
tophagic proteolysis occurs in the fasting condition (36).

The age-related accumulation of damaged mitochondria and
other forms of biological “waste” in skeletal muscle fibers, neu-
rons, and other post-mitotic cells has been interpreted as an in-
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dication for an age-related decline in autophagic activity (33).
In support of this conclusion, several experimental animal stud-
ies have shown that the formation of autophagosomes decreases
with age (36, 180, 186). Electron microscopic studies and mea-
surements of amino acid release in rats have shown that the
highest rates of postabsorptive proteolysis and the greatest sen-
sitivity to changes in amino acid concentrations were seen at 6
months of age and declined thereafter (36). The rate of prote-
olysis in the presence of high concentrations of amino acids and
the inhibitory effect of insulin on the postabsorptive protein ca-
tabolism were not significantly altered by age, whereas the stim-
ulatory effect of glucagon was shown to be blunted (33). Taken
together, the available evidence is best explained by the inter-
pretation that the autophagic activity in old age is not fully dere-
pressed in the absence of insulin, although it is still subject to
downregulation by insulin and high amino acid concentrations.

Taken together, evidence from both human and experimental
animal studies indicates that the aberrant activity of the insulin
receptor signaling pathway under starving conditions (i.e., in the
postabsorptive state) plays a decisive role in the aging process
by preventing adequate autophagy and amino acid homeostasis.
It thereby accounts at least partly for the aging-related decrease
in the postabsorptive plasma cysteine concentration. As this de-
crease is associated with an aging-related decrease in intracel-
lular glutathione concentrations, the insulin receptor signaling
cascade appears to be a key element in the vicious cycle of ag-
ing-related oxidative stress, as illustrated in Fig. 1).

AGE-RELATED DECREASE IN THE
PLASMA ALBUMIN CONCENTRATION

Due to its free thiol group at Cys 34 and its plasma concen-
tration of �600 �M, albumin is another quantitatively impor-
tant redox buffer of the blood. In studies on healthy subjects
and cancer patients, the plasma albumin concentration was sig-
nificantly correlated with the plasma thiol/disulfide redox sta-
tus (64). A marked decrease in plasma albumin level was typ-
ically seen in elderly subjects and in practically all catabolic
conditions, including cancer cachexia and HIV infection (14,
169, reviewed in Ref. 44). A placebo-controlled trial on human
immunodeficiency virus (HIV)-infected patients (22) and an un-
blinded study on cancer patients (64) showed that cysteine sup-
plementation increases the (otherwise low) plasma albumin lev-
els at least in these conditions. As albumin exists in the plasma
in both the reduced and the oxidized (i.e., mixed disulfide) form,
and as the oxidized forms of albumin have a higher catabolic
rate (105), the effect of cysteine supplementation is tentatively
explained by the conversion of oxidized albumin into its more
stable reduced form.

In a study on healthy elderly subjects, a low plasma albumin
level was correlated with a low 10-year survival rate and a loss
of skeletal muscle mass. Amongst patients with wasting syn-
drome, the plasma albumin level was shown to be a strong pre-
dictor of survival (44). However, it is not clear from these stud-
ies whether the decrease in plasma albumin is a causative factor
in its own right or merely an epiphenomenon related to an aber-
rant plasma cysteine homeostasis.

RESPONSE OF REDOX SENSITIVE
SIGNALING PATHWAYS TO CHANGES IN

THIOL/DISULFIDE REDOX STATUS

As ROS production by certain inducible NAD(P)H oxidases
is known to play a role in various redox-sensitive signaling path-
ways, it was to be expected that an abnormal elevation of ROS
concentrations in cells and tissues is associated not only with
an abnormal increase in oxidative damage of cellular con-
stituents but also with changes in the set points of important
physiological signaling pathways and aberrant gene expression
(15, 42). There is a strong possibility, for example, that the age-
related increase in ROS levels may account for age-related
changes in the steady state levels of certain cytokines, such as
interleukin 6 (IL-6) and tumor necrosis factor � (TNF-�) (re-
viewed in Ref. 45). These cytokines are proteins with a hor-
mone-like function. Certain changes in signaling pathways and
gene expression may be as important, or even more important,
than the direct structural damage resulting from aging-related
oxidative stress.

The two transcription factors which were first shown to be
stimulated by ROS, nuclear factor kappa B (NF-�B) and acti-
vator protein-1 (AP-1), were also found to be stimulated by an
oxidative shift in the glutathione redox status (56). The tran-
scription factor NF-�B is known to control the expression of
several inflammatory cytokines including TNF-� and IL-6. Ag-
ing is associated with increased circulating levels of certain in-
flammatory cytokines, including TNF-� and IL-6, and has,
therefore, been interpreted by some authors as a low-grade in-
flammatory condition (24). The age-related increase in the
steady state level of IL-6 mRNA and IL-6 production in the
brain (154, 200) is a case in point. In vivo and in vitro studies
indicate that the increase in IL-6 expression results to some ex-
tent from enhanced binding of NF-�B to the IL-6 promoter in
microglial cells (200, 201). In human dendritic cells, NF-�B
has also been implicated in the oxidative upregulation of TNF-
� and IL-8 (195). In elderly subjects, high plasma TNF-� lev-
els are correlated with increased morbidity, mortality, Alzheimer’s
disease, atherosclerosis, and decreased muscle mass and muscle
strength (44). In combination with interferon-�, TNF-� was
shown to downregulate MyoD, a transcription factor essential for
repairing damaged muscle. Hyperlipidemic patients who have, on
the average, markedly decreased postabsorptive nonprotein thiol
concentrations (Fig. 1) were also found to have a significantly
higher expression of inflammatory and oxidative stress-related
genes, including that of TNF-� (21). In frail elderly subjects, the
plasma TNF-� level was significantly correlated with the plasma
cystine level (71). Last but not least, NF-�-B and TNF-� have
been implicated in the development of inflammation-associated
cancer (44, 177). In several independent studies, TNF-� concen-
trations was downregulated by cysteine supplementation (44, 71).
Treatment with N-acetylcystine was shown to suppress NF�-B
activation in patients with sepsis (148).

The signaling pathways of NF�B and AP-1 involve various
protein tyrosine kinase species and are counter-regulated by
protein tyrosine phosphatases, the activity of which is controlled
by a redox-sensitive cysteine moiety (18, 48). At least some of
these phosphatases are sensitive to changes of the glutathione
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redox status (42). As ROS-mediated oxidative stress may in-
clude both an increase in structural damage of cellular con-
stituents as well as an abnormal induction of signaling path-
ways and gene expression, it is reasonable to assume that any
change in the thiol/disulfide redox status may also be sensed,
at least to some extent, as oxidative stress.

THE THIOL/DISULFIDE REDOX STATUS
IN CARDIOVASCULAR DISEASE

The age-related decrease in glutathione concentration in-
evitably compromises the ROS scavenging capacity, at least
during the postabsorptive period and facilitates thereby certain
“secondary” disease-related mechanisms of oxidative stress. A
prominent case in point is the group of cardiovascular diseases
that are responsible for a large percentage of aging-related mor-
tality in humans. Impairment of endothelial function is a criti-
cal step in the pathogenesis of atherosclerosis (2, 146) and is
typically associated with increased oxidative stress (61, 157,
158, 187). The aggravation of disease-related mechanisms of
oxidative stress such as xanthine oxidase-dependent ROS pro-
duction or aberrant NADPH oxidase-mediated ROS production
by the general age-related decrease in glutathione level provides
an explanation for the age-related increase in the incidence of
cardiovascular diseases.

Patients with cardiovascular disease have, on the average, a
significantly more oxidized plasma thiol/disulfide redox status
(41, 89). Atrial fibrillation, the most common cardiac arrhyth-
mia, was found to be significantly associated with oxidative
stress as indicated by the plasma redox status of both cysteine
and glutathione (131). A study of middle-aged individuals at
risk of cardiovascular disease has also shown that an oxidative
shift of the glutathione redox status is correlated with a change
in carotid intima media thickness (6, 89). A study on normal-
and hyperlipidemic human subjects with and without coronary
heart disease revealed an inverse correlation between LDL-cho-
lesterol and plasma nonprotein thiol and a positive correlation
between HDL-cholesterol and plasma thiol concentrations (98).
Another study revealed a dose-related increase of HDL-cho-
lesterol levels after N-acetylcysteine supplementation (52). The
plasma concentration of cysteine disulfide (cystine), in contrast,
showed a significant positive correlation with the expression of
the pro-inflammatory enzyme cyclooxygenase 2 (Cox-2) (20).
In hypercholesterolemic aorta, decreased glutathione concen-
trations are significantly correlated with endothelial dysfunc-
tion (1). Several independent reports illustrated the important
role of glutathione in controlling various aspects of the in-
flammatory process, including permeability and cell adhesion
(102, 137, 204). Inhibition of glutathione biosynthesis in murine
macrophages was found to increase the cell mediated oxidation
of low density lipoprotein (LDL) and the release of superoxide
radicals by up to 32% (60, 156). Ox-LDL, in turn, was shown
to induce the production of the inflammatory cytokine TNF-�
by macrophages in a process involving the redox-reactive tran-
scription factor AP-1 (90).

Several intervention studies using glutathione or the glutathione
precursor N-acetylcysteine have been performed to demonstrate
causality. In a placebo-controlled double blind clinical trial of 40

patients with peripheral artery disease, intravenous administration
of glutathione improved macrocirculatory and microcirculatory
parameters (5). In another study of 16 patients, intracoronary in-
fusion of N-acetylcysteine was found to augment acetylcholine-
mediated microvascular dilation, indicative of enhanced endothe-
lial-dependent vasomotion. Coronary vascular resistance was
decreased and coronary blood flow significantly increased (3). In
independent studies of patients with end-stage renal failure, N-
acetylcysteine has been shown to reduce cardiovascular events
(185) and to improve pulse pressure and endothelial function
(166). Finally, N-acetylcysteine was shown to prevent accelerated
atherosclerosis in an animal model (84).

ROS scavenge nitric oxide (155)  and cause an aberrant stim-
ulation of redox-sensitive transcription factors such as NF-�B,
which functions as a pivotal transcription factor in chronic in-
flammation (11). Inflammatory processes play a key role in the
development of vascular disease (114). In addition, ROS-me-
diated oxidative stress increases platelet activation and aggre-
gation (66, 194). Elevated ROS concentrations have been as-
sociated with hypertension (100) and hyperlipidemia (135).

All these oxidative processes are facilitated by the general age-
related decrease in glutathione concentrations. It should be noted,
however, that the availability of cysteine may not be the only de-
terminant that limits intracellular glutathione levels in cardiovas-
cular diseases (94). Under conditions of cysteine sufficiency, in-
tracellular glutathione concentrations can be increased by
transcriptional upregulation of �-glutamyl-cysteine ligase expres-
sion, the key enzyme in glutathione biosynthesis (123). Poly-
morphisms in the �-glutamyl-cysteine ligase gene are associated
with coronary endothelial vasomotor dysfunction (130).

ASSOCIATION BETWEEN LOW
POSTABSORPTIVE CYSTEINE

CONCENTRATION AND 
ABERRANT LIPID METABOLISM

The hepatic lipid metabolism is strongly regulated by the
transcriptional coactivator, peroxisome proliferator-activated
PGC-1�. PGC-1� is strongly induced upon fasting (115, 202),
and inhibited through phosphorylation by protein kinase Akt2
(PKB�) [i.e., by activation of the insulin receptor signaling cas-
cade (113) (see Fig. 1)]. Accordingly, PGC-1� is mainly active
in the postabsorptive state. As PGC-1� stimulates fatty acid �-
oxidation and shifts fuel usage from glucose to lipids (115), an
aberrant increase in postabsorptive insulin receptor signaling
activity provides a plausible explanation for the observed as-
sociation between low postabsorptive plasma thiol (cysteine)
levels and hyperlipidemia or obesity (see Fig. 2). Whereas in
the diabetic state, the liver is unresponsive to insulin with re-
gard to the postprandial suppression of glucose output, it con-
tinues to produce large amounts of lipids as expected from an
activated insulin receptor cascade (38, 40). Three independent
placebo-controlled clinical studies on nondiabetic obese pa-
tients (76) and healthy subjects (97, 106) have previously shown
that treatment with N-acetylcysteine (76, 97) or a cysteine-rich
protein (106), respectively, leads to a significant decrease in
body fat.
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AGE-RELATED INCREASE IN PLASMA
CYSTINE (CYSTEINE DISULFIDE)

CONCENTRATION

Blood is a relatively oxidative environment where cysteine
is constantly oxidized by several different mechanisms (41, 74,
189). As the insulin-stimulated protein synthetic activity in the
postprandial state determines decisively the clearance rate of
dietary cysteine from the plasma, it determines to a large ex-
tent how much cysteine is converted into cystine. The age-re-
lated increase in plasma cystine concentration is, therefore, a
predictable consequence of the well-known decrease in post-
prandial insulin responsiveness (7, 54, 198) and the corre-
spondingly decreased rate of postprandial protein synthesis (34,
53, 142). A similar increase in plasma cystine concentration can
be experimentally induced in healthy human subjects by a pro-
gram of intense physical exercise (96), a method which is
known to cause a decrease in insulin responsiveness ( 99, 151,
191). That the increased formation of cystine during the post-
prandial state can account for an increased cystine concentra-
tion in the postabsorptive plasma is tentatively explained by an
extremely low rate of cystine clearance, due to the fact that most
cells and tissues exhibit high transport activity for reduced cys-
teine but relatively low transport activity for its large disulfide
derivative, cystine (163). In frail elderly subjects, the plasma
cystine level was found to be significantly correlated with the
plasma TNF-� level [i.e., an inflammatory cytokine which is in-
duced by the redox-responsive transcription factor NF-�B (71)].

That the age-related decrease in plasma cysteine concentra-
tion is associated with a corresponding decrease in intracellu-
lar glutathione concentration in spite of the age-related increase
in plasma cystine level is also best explained by the differen-
tial membrane transport activities for cysteine and cystine. Al-
though the x�

c transport system for cystine and glutamate an-
ions is clearly detectable and even inducible in some cell types
(163), its relative contribution to the cellular supply of cysteine
remains unclear.

EFFECTS OF CYSTEINE
SUPPLEMENTATION ON SURROGATE

PARAMETERS OF AGING

A few clinical investigations have already shown that cys-
teine supplementation exerts positive effects on certain func-
tional parameters which are typically deteriorating in the course
of aging and may be viewed as surrogate parameters of aging
(45). One of the hallmarks of aging is the massive loss of mus-
cle mass and muscle function which is often associated with
psychological stress, compromised physical and social function,
and financial burden (reviewed in Ref. 64). Physical exercise
has been considered as a therapeutic tool to increase muscle
mass and muscle function but was also found to cause the ox-
idation of glutathione in the blood (161, 168). This oxidation
was ameliorated by treatment with N-acetylcysteine (168). The
explorative analysis of the effect of N-acetylcysteine on skele-
tal muscle functions in a placebo-controlled double-blind study
on frail elderly subjects in the context of a 6-week program of

physical exercise (71) revealed that the mean of the exercise-
induced changes in eleven different parameters of skeletal mus-
cle function in the placebo group was significantly correlated
with the sum of plasma thiol (cysteine) and asparagine con-
centrations (mean of measurements at 3 weeks and at the end
of the exercise program, (r � 0.49, p � 0.05)). The correlation
of the mean changes in the four parameters, knee extension
strength, knee flexion strength, ankle extension strength, and
hand grip strength, with the plasma concentrations of thiol plus
asparagine (r � 0.56, p � 0.02) is shown in Fig. 5A. This as-
sociation between exercise benefit and the individual level of
amino acid homeostasis was completely abrogated by the con-
comitant treatment with N-acetylcysteine. Although the mean
knee extension strength of all subjects under test was signifi-
cantly increased by cysteine supplementation (71), the more de-
tailed analysis revealed that the benefit of N-acetylcysteine
treatment was only seen in persons with lower than median
plasma thiol and asparagine concentrations (Fig. 5B). Persons
with higher than median values of thiol plus asparagines [mean
value 55.7 � 3.8 �M (� S.D)], that is, values close to those of
medium-aged healthy subjects (see Fig. 2), showed a substan-
tial exercise-induced increase in knee extension strength, both
with and without N-acetylcysteine treatment, whereas the sub-
jects with low amino acid homeostasis (mean thiol plus as-
paragine level 42.2 � 5.9 �M) did not benefit at all from the
muscle exercise program unless supplemented with N-acetyl-
cysteine (Fig. 5B). Similar results were seen when groups with
higher and lower than median plasma arginine were compared
(71). In view of the results of Fig. 5, it is reasonable to assume
that the previously observed correlation with the plasma argi-
nine level (71) reflects the importance of the state of amino acid
homeostasis in general rather than a particular function of the
amino acid arginine.

The data of Fig. 5 support the notion that the benefits of
cysteine supplementation (i.e., an intervention designed to
decrease the insulin receptor signaling activity) may depend
on the level of amino acid homeostasis in a given individ-
ual. This conclusion leads to the question whether this level
of amino acid homeostasis as indicated by the postabsorp-
tive thiol and asparagine concentrations is a relatively con-
stant property of a given individual or subject to longitudi-
nal variations. It was therefore of interest to determine the
longitudinal changes of the thiol plus asparagine concentra-
tions in the individual elderly subjects from the trial of Ref.
71, (i.e., same subjects as in Fig. 5) during the 12-week ob-
servation period. The data (Fig. 6) illustrate that approxi-
mately half of the subjects who started at baseline examina-
tion with thiol plus asparagine concentrations in the lowest
tertile (�46.99 �M) moved into a higher tertile during the
following 3 weeks, whereas 33% of subjects in the interme-
diate tertile moved into the lowest tertile during the follow-
ing 3 weeks, and �40% of the subjects in the intermediate
or highest tertile shifted into the lowest tertile at some time
during the 12-week observation period. This relatively strong
longitudinal variation suggests that cysteine supplementation
should be given to all subjects and not only to those with
low thiol plus asparagine concentrations in order to ensure
for all subjects a substantial improvement in muscle func-
tion in response to physical activity.
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Unfortunately, all these data and conclusions are based on a
single clinical study and need to be confirmed. The weight of
the evidence may be strengthened, however, by the total body
of complementary information described in this editorial re-
view.

CYSTEINE SUPPLEMENTATION,
CALORIE RESTRICTION, AND OTHER

DIETARY STRATEGIES TO MODULATE
AUTOPHAGY AND OXIDATIVE STRESS

In various animal species, including mammals, restriction of
dietary calories was shown to result in significant lifespan ex-
tension (175, 197). Lifespan extension in diet-restricted rats was
associated with increased blood glutathione levels (107). In two
independent studies, calorie restriction increased autophagic ac-
tivity (39, 124), and in several studies of mice, rats, and fruit
flies, lifespan extension of caloric-restricted animals was asso-
ciated with a decrease in oxidative tissue damage (65, 205). 
Insulin attenuated at least some of these effects (31). These find-
ings raise the question whether the method of balancing cys-
teine supplementation could simply be replaced by calorie re-
striction.

The downside of calorie restriction is that any episode of hy-
poglycemia induces hypoglycemic response factors, including
cortisol, glugacon, and adrenalin (epinephrine). These hypo-
glycemic hormones have a powerful catabolic effect on skele-
tal muscle protein which may involve the proteasomal mecha-
nism of proteolysis (32). Because plasma glucocorticoid levels
increase in many catabolic conditions, it has been suggested
that glucocorticoids may generally play an important role in
skeletal muscle wasting (32, 46, 70, 112). Despite the impres-
sive lifespan-extending effects of calorie restriction in several
animal models, there is general agreement that this method
ought to be replaced by a better one as soon as the underlying
mechanisms are understood.

An important implication of the mechanistic scheme in Fig.
1 is that it may lead to better strategies of slowing this vi-
cious cycle of age-related oxidative stress. Dietary cysteine
supplementation is just one obvious strategy. Theoretically,
simply increasing the water intake during the night may fa-
cilitate autophagic activity by decreasing the plasma amino
acid concentration. This and other possibilities remain to be
tested.

EFFECT OF DIETARY CREATINE

Another factor of consequence is the dietary intake of crea-
tine. Creatine monohydrate has been extensively used by ath-
letes in doses of up to 20 g per day to increase their muscle
mass. Beef, for comparison, contains �5 g creatine per kg. As
muscle tissue may contain up to 30 mM creatine phosphate and
the muscle mass accounts for almost half of our body weight,
creatine is one of the quantitatively most important low mo-
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FIG. 5. Correlation between muscle function and amino acid
homeostasis—effect of cysteine supplementation. The de-
tails of this study have been described in Ref. 71. Changes in
muscle force have been determined in frail geriatric patients
during a 6-week program of physical exercise and a 6-week fol-
low-up period. The subjects were treated for 6 weeks with a
daily dose of 1.8 g N-acetylcysteine or placebo. Indicated amino
acid concentrations are the sum of thiol (cysteine) and as-
paragine (ASN) and represent the mean of two measurements
obtained during and immediately after the 6-week period of
physical exercise. The indicated changes in muscle force are
the mean of changes during the 6-week exercise period and the
changes during the total 12-week observation period. (A) Cor-
relation between the mean of the changes in leg extension, leg
flexion, ankle extension, and hand grip versus the sum of thiol
and asparagine concentrations. (B) Mean changes in knee ex-
tension strength for the following subgroups of patients: (a)
placebo group with thiol plus asparagine levels � median (51.3
�M); (b) placebo group with � median thiol plus asparagine;
(c) N-acetylcysteine treated group with � median thiol plus as-
paragine; (d) N-acetylcysteine treated group with � median
thiol plus asparagine. Subjects with a low level of amino acid
homeostasis show practically no improvement in response to
skeletal muscle activity (physical exercise) unless supplemented
with an additional source of cysteine.



lecular weight metabolites in our body. Creatine is a natural
constituent of skeletal muscle and brain tissues and plays an
important role in the energy metabolism of these tissues (9, 47,
73, 80, 178, 179, 208). The endogenous capacity to synthesize
creatine within our body is not always sufficient to satisfy the
needs (25). Several authors described pathological conse-
quences of creatine deficient states of the central nervous sys-
tem (47, 178, 179) and muscle tissues (9).

However, simultaneous administration of creatine was found
to completely reverse the increase in postabsorptive HOMA-R
index by N-acetylcysteine (76). This is tentatively explained by
the fact that the insulin receptor tyrosine kinase reaction re-
quires adenosine 5�-triphosphate (ATP) as a co-substrate and is
inhibited by adenosine 5�-diphosphate (ADP) as one of its prod-
ucts (165). In the cytoplasm of skeletal muscle cells, ADP is
rapidly converted into ATP by creatine kinase in combination
with phosphocreatine. High dietary intake of creatine may
therefore enhance the phosphorylation events in the insulin re-
ceptor signaling pathway.

Accordingly, a carefully balanced amount of dietary cys-
teine supplementation in combination with a well-balanced
amount of beef or other sources of dietary creatine may be
used to adjust the individual postabsorptive insulin receptor
signaling activity to the desired level. A low level of postab-
sorptive insulin receptor signaling is a prerequisite for amino
acid homeostasis and autophagic removal of cellular waste.
However, as autophagy is a catabolic process, it has to be care-
fully balanced to avoid loss of body cell mass. Major changes

in insulin receptor signaling may also compromise other in-
sulin-responsive functions such as glucose clearance and the
regulation of cell survival vs. apoptosis in certain cells and
tissues. Ideally, cysteine supplementation should, therefore,
be well balanced and adjusted to the individual metabolic
state.

NEED FOR A SIMPLE DIAGNOSTIC TEST

To establish the need for cysteine supplementation is not a
trivial task. Analysis of postabsorptive venous plasma concen-
trations of reduced cysteine is complicated by the fact that stan-
dard amino acid analyzers determine cystine but not reduced
cysteine. Reduced cysteine can be determined by HPLC after
derivatization, but processing of the blood would have to start
soon after drawing the blood because cysteine is rapidly oxi-
dized into cystine. Simple routine diagnostic tests for postab-
sorptive plasma cysteine concentrations will therefore not be
available in the near future.

The intracellular glutathione concentration in the liver is most
strongly affected by changes in cysteine availability and repre-
sents one of the largest glutathione pools in the body. In addi-
tion, a change in the hepatic glutathione level may be one of
the functionally most relevant consequences of inadequate cys-
teine homeostasis. However, liver biopsies are not available for
routine tests.

With regard to the plasma glutathione concentration, there is
reason to believe that this glutathione pool has no function other
than being an overflow of the highly concentrated intracellular
glutathione in the liver (108). However, as the intracellular glu-
tathione concentration in the liver is significantly correlated
with the sum of the reduced plus oxidized plasma glutathione
concentrations (89), the plasma level of “total glutathione” may
be a relatively robust indicator for changes in the hepatic glu-
tathione concentration. Time will tell whether the plasma glu-
tathione level may be the simple routine diagnostic test one
would be looking for.

Whole blood glutathione measurements reflect mainly red
blood cell glutathione. A study of community-based elderly
subjects revealed that relatively high levels of whole blood glu-
tathione were significantly correlated with a fewer number of
illnesses, lower cholesterol, and lower blood pressure (91).
However, because of its dependence on different confounding
factors, the whole blood glutathione measurement is not a mean-
ingful diagnostic test to determine the cysteine requirement of
the individual subject.

Regardless of which of these techniques are being used, the
data in Fig. 6 suggest that a given individual would have to be
tested repeatedly to obtain meaningful information.

CONCLUDING REMARKS

Taken together, this mosaic of information from different
fields of research reveals a vicious cycle in which oxidative
stress is caused by an aberrant insulin-independent (postab-
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FIG. 6. Longitudinal changes in thiol plus asparagine val-
ues. To determine the longitudinal variation of the postab-
sorptive amino acid homeostasis, we grouped the frail elderly
subjects from the study of ref. 71 (see Fig. 5) according to their
thiol plus asparagine values at baseline examination as being
in the lowest, intermediate, or highest tertile. The data show the
proportion of subjects of each tertile which either remained in,
or shifted into, the lowest tertile (a) as tested in the subsequent
blood test after 3 weeks and (b) as determined in any of the
following three blood tests. The data show that nearly half of
the subjects who started in the lowest tertile shifted out of this
low range, and that close to 40% of the subjects in the inter-
mediate and highest tertile moved into the lowest tertile at least
at some point during the observation period, indicative of a sub-
stantial degree of longitudinal variation.



sorptive) insulin receptor signaling activity and the resulting
impairment of amino acid homeostasis. The aberrant increase
in the postabsorptive insulin receptor signaling activity, in turn,
can be induced by oxidative stress as illustrated in Fig. 1. The
available evidence strongly suggests that the postabsorptive pe-
riod (i.e., the starved condition) determines decisively the bur-
den of oxidative stress and some of its most important conse-
quences because glutathione levels in the liver and possibly
other cells and tissues reach their lowest value during this pe-
riod. The aging-related decrease in glutathione concentrations
and thiol/disulfide redox status and the corresponding increase
in oxidative stress are associated with and may result from an
age-related decrease in the postabsorptive plasma concentration
of nonprotein thiol and its major constituent cysteine. The de-
crease in postabsorptive cysteine, in turn, appears to reflect a
decrease in autophagic activity as a key mechanism in amino
acid homeostasis under starving conditions.

Glutathione is one of the quantitatively most important radi-
cal scavengers and co-substrate for the enzymatic removal of
hydrogen peroxide. As ROS are produced at a highly regulated
rate by numerous NAD(P)H oxidases and play a role in impor-
tant signaling pathways, the age-related decrease in glutathione
concentrations alters the set points of the corresponding physi-
ological signals at least to some extent. The widely observed
age-related increase in inflammatory cytokines and an aberrant
increase in insulin independent (basic) insulin receptor signal-
ing activity are interpreted to be consequences of this effect.

A low insulin receptor signaling activity in the postabsorp-
tive period is physiologically important as it sets the stage for
maximal autophagy and for maximal activity of FOXO tran-
scription factors and hepatic PGC-1�, both of which are inhib-
ited by insulin through Akt-dependent phosphorylation. An
aberrant increase in postabsorptive insulin receptor signaling
activity is expected to compromise all these functions.

Autophagy is known to play a role in the maintenance of cel-
lular integrity by removing damaged mitochondria and other
forms of cellular waste, and an inadequate autophagic removal
of cellular waste may play an important role in human aging.
In Saccharomyces cerevisiae and Dictyostelium discoideum, au-
tophagy was also shown to be essential for free amino acid 
homeostasis and survival under starving conditions. As the
quality of amino acid homeostasis determines the plasma 
concentration of reduced cysteine in the starved condition and
the autophagic activity is negatively controlled by the insulin
receptor signaling pathway, this signaling cascade plays a crit-
ical role in the vicious cycle of oxidative stress, as illustrated
in Fig. 1.

Genetic studies on a series of longevity mutants in worms,
fruit flies, and mice have convincingly shown that the insulin
receptor signaling cascade and the insulin-inhibitable FOXO
transcription factor activity and autophagic protein catabolism
have a decisive influence on the lifespan of these species. In
view of the spectacular lifespan extension in some of these mu-
tants, it is reasonable to hypothesize that the current maximum
lifespan of the human species of �120 years can be substan-
tially extended and the quality of life in old age markedly im-
proved once the underlying mechanism of longevity will be un-
derstood in greater detail and new interventions will be
clinically established. This editorial review is hoped to shed
some light.

The various details of the scheme in Fig. 1 are supported by
numerous studies in humans and experimental animals. A series
of animal studies has shown that autophagic protein catabolism
is rigorously controlled by the insulin receptor signaling cascade
and by the concentration of free amino acids. Complementary
studies in humans have shown that a substantial rate of insulin
sensitive protein catabolism indicative of autophagy occurs in
the postabsorptive (starving) condition. As typical for au-
tophagy, this catabolism is downregulated by increasing amino
acid levels and leads to a controlled efflux of free amino acids
as a key mechanism of amino acid homeostasis.

Evidence for an age-related decline in autophagic activity has
been obtained in animal studies, but not yet in humans. How-
ever, the age-related decline in the mean postabsorptive plasma
thiol, cysteine, and asparagine concentrations in humans may
be indicative of an age-related decline in autophagic activity
and amino acid homeostasis. The insulin-inhibitable postab-
sorptive protein catabolism in human peripheral tissues (mainly
skeletal muscle) has been extensively investigated by amino
acid exchange studies in several laboratories. Unfortunately,
there are no reports about aging-related changes in the insulin
and amino acid-sensitive postabsorptive protein catabolism, and
there are practically no quantitative data on the postabsorptive
release of reduced cysteine into the plasma. This has been ham-
pered by the difficulty in dealing with this easily oxidizable
amino acid.

The causal relationship between changes in cysteine avail-
ability and postabsorptive (basal) insulin signaling activity as
expressed by the HOMA-R index has been demonstrated in one
clinical trial and is supported by indirect evidence from many
complementary laboratory experiments and clinical studies.

The various findings summarized in this editorial review re-
veal new perspectives but also limitations. One implication of
the scheme in Fig. 1 is that the age-related increase in oxida-
tive stress may be ameliorated by dietary strategies which aim
at increasing the postabsorptive autophagic activity. A major
limitation is the difficulty to reconcile the need for the au-
tophagic removal of cellular waste and maintenance of amino
acid homeostasis, on the one hand, with the anabolic processes
needed to maintain body cell mass and to minimize the age-re-
lated loss of skeletal muscle mass and muscle function, on the
other hand. There is some clinical evidence, however, showing
that a well-balanced cysteine supplementation can be effective
in improving skeletal muscle function in frail elderly subjects.
This finding is based on one study and needs to be confirmed.

Reports about adverse effects of superoptimal cysteine sup-
plementation are scarce. In a recent study of mice, high-dose N-
acetylcysteine treatment was found to cause pulmonary arterial
hypertension that mimicked the effects of chronic hypoxia (144).
This effect appears to be related to the hypoxia-mimetic effects
of N-acetylcysteine treatment in humans (74). More systematic
studies on potentially adverse effects of cysteine supplementa-
tion and the determination of a safe dose range are clearly
needed, but will inevitably be restricted to experimental animals.
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ABBREVIATIONS

ADP, adenosine 5�-diphosphate; Akt/PKB, protein kinase B;
AP-1, activator protein 1; ATP, adenosine 5�-triphosphate;
Becn1, beclin-1; Cox-2, cyclooxygenase 2; Cys-SOH, cysteine
sulfenic acid; FOXO, forkhead transcription factor; GPX1, glu-
tathione peroxidase 1; HDL, high-density lipoprotein; HIV, hu-
man immunodeficiency virus; HOMA-R, homeostatic model of
insulin responsiveness; HPLC, high pressure liquid chro-
matography; IL-6, interleukin 6; LDL, low-density lipoprotein;
(m)TOR, (mammalian) target of rapamycin; NF-�B, nuclear
factor kappa B; OxLDL, oxidized LDL; PDK, phosphoinosi-
tide-dependent kinase; PGC-1�, peroxisome proliferator-acti-
vated receptor � coactivator 1	; PTB 1B, protein tyrosine phos-
phatase 1B; PTEN, phosphatase and tensin homologue on
chromosome 10; ROS, reactive oxygen species; SHIP2, SH2-
domain containing inositol phosphatase; SOD, superoxide dis-
mutase; TNF-�, tumor necrosis factor �.
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